## Translations

These notes are intended as a summary of section 3.1 (p. $162-168$ ) in your workbook. You should also read the section for more complete explanations and additional examples.

## Vertical Translations

On the axes pictured to the right, you will see the graph of $y=x^{2}$.

To see how the graph of $y=x^{2}+k$ compares to the graph of $y=x^{2}$, plot the following functions on the same axes:

$$
\begin{aligned}
& y=x^{2}+3 \\
& y=x^{2}-3
\end{aligned}
$$



In general, the graph of $y=f(x)+k$, also written $y-k=f(x)$, is the graph of $y=f(x)$ shifted $|k|$ units up (if $k>0$ ) or down (if $k<0$ ).

Note: The easiest way to draw the translation of a graph is to identify a few lattice points (points on a graph that are directly on the intersection of the grid) on the parent graph, move those lattice points the desired amount, and then sketch the resulting graph.

## Horizontal Translations

On the axes pictured to the right, you will see the graph of $y=x^{3}$.

To see how the graph of $y=(x-h)^{3}$ compares to the graph of $y=x^{3}$, plot the following functions on the same axes:

$$
\begin{aligned}
& y=(x+2)^{3} \\
& y=(x-3)^{3}
\end{aligned}
$$



In general, the graph of $y=f(x-h)$ is the graph of $y=f(x)$ shifted $|h|$ units right (if $h>0$ ) or left (if $h<0$ ).

## Domain and Range

The domain of a function is the set of all $x$ values for which the function is defined. In other words, it is the set of $x$ values that result in valid $y$ values. When determining the domain of a function, remember that

- the denominator of a fraction can't be zero
- the number under a square root sign must be positive

The range of a function is the set of all $y$ values that result from the given domain. In other words, if you substituted every value of $x$ from the domain into the function, the result would be the values of $y$ in the range.

## Example 1 (sidebar p. 165)

Here is the graph of $y=g(x)$. Sketch the image graph after each translation. Write the equation of the image graph in terms of the function $g$. State the domain and range of each function.
a) a translation of 4 units left
b) a translation of 1 unit up


## Example 2 (sidebar p. 166)

Here is the graph of $y=j(x)$. Sketch the image graph after a translation of 4 units left and 5 units down. Write the equation of the image graph in terms of the function $j$. State the domain and range of each function.


## Example 3 (sidebar p. 167)

The graph of $y=\frac{1}{x}$ is translated 3 units left and 2 units up. What is the equation of the image graph?

## Example 4 (sidebar p. 167)

Describe how the graph of $y=\frac{1}{x^{2}}$ (shown to the right) could have been translated to create the graph of each function below. What are the equations of the asymptotes of each image graph?
a) $y-3=\frac{1}{x^{2}}$
b) $y+4=\frac{1}{(x+3)^{2}}$


Homework: \#4-10, 12-17 in the exercises (p. 169-175). Answers on p. 176.

